If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x-2352=0
a = 2; b = 14; c = -2352;
Δ = b2-4ac
Δ = 142-4·2·(-2352)
Δ = 19012
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19012}=\sqrt{196*97}=\sqrt{196}*\sqrt{97}=14\sqrt{97}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14\sqrt{97}}{2*2}=\frac{-14-14\sqrt{97}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14\sqrt{97}}{2*2}=\frac{-14+14\sqrt{97}}{4} $
| (3x*2=238)*2 | | 3x*2*2=238 | | 14+3(3x+5)-7x=61 | | 7x+36=3x+11 | | 9=6(v+1)-(2v-) | | 9X-2(4x-7)+12=0 | | (3x^2-2x-4)(4x+3)=0 | | 12x+18=78 | | 3(x-24)+3(x-4)=18 | | 9x+3x=238 | | 30x-4(6x+5)-1=63 | | 4a-3(a-6)=4+2a | | (x+4)=20-x/2 | | 7x-×=12 | | 5x=40+5 | | (5v+4)(8-v)=0 | | -4(-4-b)=1/3(b+4) | | 3x-2(5)=11 | | 2(x-2)-27=17-4x | | x-5=78-12(x+8) | | ((5x-3-2x)/7)=24 | | 5/3v=35 | | 2x+19=x+17=180 | | 9r^2-6r=7 | | 3x*2=238 | | .5x-26=15 | | -5(3x+6)=4(5x+10) | | 6x^-4=6^12 | | 2x+30=3x-90 | | 16^(-x+3)=15^(8x) | | (0.0175-x)(0.0175-x)=0 | | 2.3x+4.2+2=4.2 |